
Webscience

80 Published by the IEEE Computer Society 1089-7801/08/$25.00 © 2008 IEEE IEEE INTERNET COMPUTING

Graph Farming

Danny Ayers • Talis

I n my last column (“A Difficult Abstraction,”
vol. 11, no. 5, pp. 86–89), I attempted to dem-
onstrate that the level of abstraction that

most Web developers work at isn’t well suited for
increasing the Web’s sophistication and hence
its utility to end users. The specifications are
such that either things get hard very quickly,
or developers take shortcuts, employing ad hoc
abstractions that diverge from Web standards.
In this issue, I’m going to talk more about the
Web’s evolution (in an increasingly roundabout
fashion), and then offer some suggestions to-
ward another abstraction of the Web that I think
might alleviate many current obstacles to a sig-
nificantly better Web.

The Giant Global Graph
Since my last column, Tim Berners-Lee has
obligingly published three items I believe sup-
port the arguments I made to some extent. In a
new Design Issues post, “Levels of Abstraction:
Net, Web, Graph” (www.w3.org/DesignIssues/
Abstractions.html), he describes conceptual ab-
stractions — from the wires of early telecom-
munications, through computers, to networks
and the Internet, and on to the Web. The level of
abstraction he emphasizes is a change in focus
from a Web that’s about documents to a “graph”
that’s about things (objects, people, places, con-
cepts, and so on) and the connections between
those things. This is the level at which Semantic
Web technologies should let us operate.

This graph-of-things abstraction has fea-
tured in Berners-Lee’s work for a long time (a
good example is his presentation from the first
International WWW Conference in 1994 at www.
w3.org/Talks/WWW94Tim), but his motivation
for reiterating the idea now is clear in a blog
post on the subject entitled “Giant Global Graph”
(http://dig.csail.mit.edu/breadcrumbs/node/
215). In it, he explains how the phenomenal

growth of social networking sites has recently
prompted deeper discussion of the real-world
social networks they describe. These sites are
in effect closed worlds, with little cross-system
interoperability. In a piece which created quite
a stir in the blogosphere, “Thoughts on the So-
cial Graph” (http://bradfitz.com/social-graph-
problem), Brad Fitzpatrick and David Recordon
identify the problems encountered when inter-
acting with systems built on silos of personal
data, the disparity between these systems, and
potential solutions. They’ve brought the social
graph, the “global mapping of everybody and
how they’re related,” to wider consciousness.
But as Berners-Lee points out, this interper-
sonal graph is only a subset of a greater graph
of things.

I believe compelling evidence exists that
the global graph abstraction Berners-Lee de-
scribes is key for the Web to thrive long term,
although his word choice is slightly daring. The
phrase “Semantic Web” is a reasonably accurate
reflection of what it describes, and isn’t likely
to go away, yet probably wouldn’t have been a
marketer’s first choice. Some in the Semantic
Web community have substituted “Web of data”
wherever possible in discussions in which the
original phrase might have been misconstrued.
Personally, I like this phrase because it nicely
contrasts with “Web of documents,” and if you
make your data Web-shaped, you have the very
same global graph as Berners-Lee discusses.
Others are willing to grit their teeth and talk
of “Web 3.0” but aside from aesthetic consider-
ations, this brings in difficult questions of scope.
However, although a Giant Global Graph might
work as a valid, useful, and palatable high-level
view, it’s far from the end of the story for people
involved in building this stuff.

In my last column, I included a few diagrams
I hoped would show that protocols such as HTTP

JANUARY/FEBRUARY 2008 81

Graph Farming

weren’t exactly trivial even in a
document-oriented context, and that
when the graph model of RDF (the
foundation of Semantic Web technol-
ogies) was brought in, it pushed the
limits of what any mortal developer
could be expected to comprehend,
let alone use in his or her day job.
The final new item from Berners-Lee
that I’d like you to note is an image
he’s created that blows my sketches
out of the water. His “The basic fol-
low-your-nose way the Web works”
diagram (www.w3.org/DesignIssues/
diagrams/arch/follow.png) shows the
core components involved when tra-
versing a Web of graph-shaped data
and documents. He’s elided subsys-
tems here that would significantly
increase the diagram’s complexity
— for example, the potentially recur-
sive Gleaning Resource Descriptions
from Dialects of Languages (GRD-
DL; www.w3.org/TR/grddl-primer/)
mechanism for interpreting XML
documents as RDF. Yet it’s already
intricate enough to suggest it might
make a good diagnostic for Asperg-
er’s syndrome (and membership to
certain W3C Working Groups). I’d
like to suggest an abstraction that I
think might help avoid this kind of
diagram’s cognitive overload, but let
me first provide some context.

Bits and Beans
A common phrase in Web specifica-
tions is user agent, defined in HTTP
1.1 (www.w3.org/Protocols/rfc2616/
rfc2616.html) as “The client which
initiates a request. These are often
browsers, editors, spiders (Web-tra-
versing robots), or other end-user
tools.” To put this into context,
consider a typical set of Web inter-
actions. Say you’re getting a little
hungry and need a nutritious bean
recipe. You open a browser and visit
a search engine to get a list of pages
likely to contain the kind of dish
you have in mind. You visit the most
promising page, then make haste to
the kitchen. Your browser has acted

as a user agent here, intermediating
with remote services on your behalf.

Now consider the busy develop-
er’s solution, a can of baked beans.
Simple, nutritious, convenient food.
Open the can, gently heat the con-
tents with your preferred cooking
facility, serve on toast — delicious.
As the product’s end user, your inter-
actions with it prior to consumption
are fairly limited — probably involv-
ing the choice of product, a financial
transaction in a supermarket, and
transport to the pantry. In terms of
information complexity, introducing
the beans to toast seems comparable
to finding a recipe on the Web. The
beans were once a remote resource;
the supermarket acted as a real-world
user agent to provide them to you.

But what of the system complex-
ity beyond the user agent? The recipe
page’s creator likely used a content-
management system to present the
text in an appetizing form. The
recipe document sat in a database or
filesystem behind a Web server un-
til the appropriate protocol requests
came along, at which point, the
server delivered the document to the
user agent. The search engine that
enabled identification of the resource
of interest did a lot of work behind
the scenes: it spidered and indexed
a large set of documents in advance,
so that when the query came in, vari-
ous algorithms selected, ranked, and
returned pointers to documents that
corresponded to the query.

This is, of course, a hugely sim-
plified view of the system server-
side. Several protocol layers will
have been in action, notably TCP/IP,
DNS, and HTTP. The packets convey-
ing the information from the remote
server to your user agent might have
come a long and convoluted route
through many intermediaries. To be
useful at Web scale, a search engine
is going to be nontrivial. Chances
are the search engine will use some
kind of distributed architecture to
balance the data and computational

load across multiple physical sys-
tems, with several layers of abstrac-
tion used to make the system work
from the human query-response
view right down to the flipping of
individual bits. This is a software
system; for the sake of argument,
let’s not go into the hardware.

So what’s server-side for the can
of beans? The most local level of
transport will have been relatively
straightforward in terms of concep-
tual complexity, probably shipping
by road and rail. But the biggest
difference here is in how the can of
beans came into being. There are
the vegetable materials that wound
up on the end user’s plate: beans,
and whatever went into the sauce.
It seems reasonable to consider the
bean plants as the origin level in this
scenario. But the packaging is part
of the product, too. There are nu-
merous long paths back to the con-
stituent components. Not only were
the beans and tomatoes nurtured
on the farm before harvesting, the
can’s metal was mined and the iron
smelted into steel before pressing
and plating. Even the label’s creation
will have been nontrivial, with wood
pulp probably bleached by chlorides
before pressed into paper, decorated,
and protected with colored varnishes
of petrochemical origin.

Although the general amount
of end-user interaction is similar
in these two scenarios, if you drill
down and open the hood on some of
the abstractions, much more complex
and diverse components are at work
behind the material production and
delivery system than the information
production and delivery system.

Putting aside any social and polit-
ical questions, the consumer-orient-
ed material systems we have in this
day and age are in reality composed
of several different components,
interconnected through social and
economic protocols, along with plain
old physics. The scale and complex-
ity of individual components var-

Webscience

82 www.computer.org/internet/ IEEE INTERNET COMPUTING

ies, but we can demarcate each as a
commercial unit. We can view these
units as acting as discrete agents,
communicating through common,
standard interfaces (typical physical
transport and money).

The point I’m trying to circle
around here is that compared to typ-
ical real-world systems, the systems
currently operating on the Internet
are remarkably crude. We do have
the low-level software and hardware
infrastructure available to support
anything we like at a global scale.
Take the One Laptop Per Child initia-
tive (http://laptop.org) — it’s at least
broadly conceivable that we could
provide every child on the planet
with a computer that’s connect to
the Internet. But as an information
society, our daily individual interac-
tions with the network are still at the
hunter-gatherer stage. This is only
to be expected given the Internet’s
novelty. Fifty years ago, it might
have been broadly conceivable that
we could provide every child with
an individual book. Now we’re talk-
ing about access to every single book
written, plus a whole lot more, with
Berners-Lee’s Giant Global Graph —
and keep in mind that computers can
do more than act as dumb conveyers
of data; they can compute. What we
need here is a way of thinking about
Internet-based systems that supports
the Giant Global Graph abstraction,
encompasses processing in this en-
vironment yet is conceptually simple
enough that real-world developers
can use it in their daily work.

Bring on the Agents!
Not long ago, James Hendler asked,
“Where Are All the Intelligent
Agents?” (IEEE Intelligent Systems,
vol. 11, no. 3, 2007, pp. 2–3). The ar-
ticle’s abstract is succinct: “There has
been much research and talk about
intelligent agents, but few real-world
implementations.” I’d like to attempt
to answer Hendler’s question in the
context of the Web.

One possible answer is that, in
the new environment, the agents
simply got renamed “services.” A
Web service typically takes input
from the outside world, carries out
operations locally, and returns the
desired output. It acts as a quasi-
autonomous system, and can inter-
act with other such systems in the
same general manner as traditional
agents. This would be well and good
but for developers’ tendency to use
simple abstractions that skip fea-
tures of the Web specifications or
develop systems that explode in
complexity with little hope of rich
interoperability with other Web sys-
tems. Either way, almost inevitably
the immediate motivation of provid-
ing some local functionality within
the usual constraints overwhelm
considerations of the bigger picture.
I say almost inevitably because there
is a proportion of system architects
and Web developers that realize the
value that high levels of interoper-
ability with the outside world can
offer, even if that value is hard to
measure in advance.

The Giant Global Graph is an ex-
cellent perspective on how we can
consider diverse pieces of Web infra-
structure as a conceptual whole. The
Web, when augmented with RDF’s
graph model, provides an intercon-
nected system. The resources on the
Semantic Web are interconnected
through logical predicates, but this
layer exists on top of the coupling
offered by the link, as built into the
Web since day one. Resources can
be identified with URIs designed for
HTTP, and the primary Web mech-
anism is that of using HTTP to get
representations of those resources.
Put this together and you have a
system in which you can follow your
nose through links of interest to
find more related information from
any given point. This approach is
exactly the same in principle as the
document Web’s linkage and naviga-
tion. However, when the material be-

ing traversed contains a reasonable
proportion of machine-readable se-
mantic information (rather than text
and media that only a human can
decipher), the potential for software
agents to act autonomously is greatly
increased. It was while working in
this context that I found myself with
code that hinted at a simple abstrac-
tion for Web systems.

What the Code Suggested
A couple of years ago, largely out
of curiosity, I worked on some RDF-
based syndication code. I had lots of
directories full of Python scripts, and
it was getting unwieldy. Around the
same time, an employer asked me to
investigate the Java Agent Develop-
ment Framework (JADE; http://jade.
tilab.com). I found it an eye-opener.
Here was (an implementation of) a
conceptually simple abstraction of
software systems that felt very nat-
ural. For any given application, you
have a number of agents acting au-
tonomously, each with its own set of
localized behaviors and the ability
to communicate with other agents.
I was quite surprised to realize that
unbeknown to me, my Python code
had been heading toward this same
abstraction. My scripts were rela-
tively autonomous; they each had a
small set of behaviors and an appli-
cation would be constructed by wir-
ing the individual agents together.

Although my “agents” did most
of their intercommunication through
an RDF store acting as a whiteboard,
they communicated with other sys-
tems over HTTP. Figure 1 shows
what I believe is a feasible general
model for a class of agents on the
Semantic Web.

The idea is that like most tradi-
tional artificial intelligence agents,
these hypothetical Semantic Web
agents interact through message
passing, in this case with the Web
as the medium for those messages.
They have local memory (the RDF
model), the size of which will depend

JANUARY/FEBRUARY 2008 83

Graph Farming

on what’s required to support their
behaviors. Although for many data
routing and processing tasks, only a
small amount of immediately acces-
sible data will be needed, agents that
are intended to provide long-term
memory — for example, to act as the
backing store for a traditional con-
tent-oriented Web site — will allocate
whatever space they need. Within the
agents’ memory will be self descrip-
tions and more than likely a cache
containing information about agents
with which they commonly interact.
The behavior will ideally be limited
to some discrete piece of function-
ality, aggregating or filtering data
from other sources, for example. The
HTTP server subcomponent exposes
all the resources in the agent’s im-
mediate scope to the Web, allowing
the internal state to be transferred.
The HTTP client allows the agent
to get more information from other
agents on the Web. A common fea-
ture among such agents would be
behavior to provide (and interpret)
data in representations that aren’t
RDF-oriented. Such behavior could
be implemented locally, or it might
be preferable to allocate agents to
specific representation-conversion
tasks. In practice, it’s likely that
systems built on this kind of agent
would use auxiliary storage for
“pure” content — static representa-
tions that rarely change. Alternately,
a direct connection could be made
between the agent’s internal RDF
model and external non-RDF mate-
rial for simple representation routing
or for on-the-fly data translation.

However, a potential conflict ex-
ists between an architecture like this
and typical Web components. HTTP
is request–response; a prerequisite
for useful messaging is the ability
to act asynchronously. Agents might
be required to communicate with
other agents for their work, yet still
respond in reasonable time to any
request. Here, I defer to the “Behav-
ior” black box in the figure — where

necessary, another process would
be spawned internally and use the
HTTP client facility as required for
other interactions.

Architecture,
Implementation,
or Abstraction?
Okay, so I cheated — the kind of agent
system I’ve described could also be
considered an architecture for de-
veloping applications from scratch.
In fact, I coded up a fair amount of
such a system (and intend to work on
it again when time permits; it’s an
irresistible exercise), quite enough
to identify some of the immediate
issues — for example, it calls for se-
rious contortionism to make HTTP
client and server components seem
like messaging inputs and outputs.
The not-quite similarity between ob-
ject-oriented classes and instances
(and running processes) of the pro-
gramming language and those of Se-
mantic Web languages caused a fair
amount of confusion.

I thought it necessary to present
this architecture as an agent design
in part because the notion of “user
agent” we’ve carried over from the
Web’s early days is somewhat back to
front compared with what’s needed
for a more sophisticated Web. Rath-
er than conceptualizing clients as
agents for end users, it seems to al-
low far greater versatility if we think
of them as agents that act like auton-
omous users, interacting with other
agents on the Web. I’m not suggesting
full-blown, belief-based, intentional
agents. Rather, I’m suggesting that

we refactor our view of the systems
we’re already using to see them in a
more self-contained, discrete fashion.
Exposing a database as linked data
or enriching a content management
system with Semantic Web capabili-
ties could be seen as a special case of
the RDF-oriented agent.

The document Web’s preoccu-
pation with the browser is entirely
understandable given its role as a
document viewer, but perhaps other
areas need more attention. The cli-
ent-server abstraction itself leans
us toward a two-ended vision of
how the system as a whole operates
— there’s the service, here’s the end
user (or worse still, vice versa). The
service might have multiple tiers be-
hind it, but that doesn’t help much
where it really matters on the Web,
close to the links that connect it to
the rest of the graph.

I n the real world, I have no knowl-
edge of the system that grew the

beans that went into the can, nor
of the steel manufacturing process
that went into making the can. The
bean growers and steelworkers have
little need to interact either. Yet,
user interactions with the Web are
predominantly like hand-to-mouth
existence. We need to move on to in-
formation agriculture.

Danny Ayers works for Talis as a developer

community liaison for its Semantic Web

platform (http://talis.com/platform). His

blog is at dannyayers.com. Contact him

at danny.ayers.ieee@gmail.com.

Behavior
Model

HTTP client

HTTP server

Communications bus
(The Web)

Figure 1. Semantic Web agents. An agent has a working memory (in the RDF
Model), input and output through HTTP connectors, and behavior which
defines how it processes information.

