
Webscience

84 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

A Difficult Abstraction

I n this column, I’ll describe some of what the
developers of generalized Web systems have to
deal with, assuming they take the specifications

at face value. I believe the developer community
is generally overloaded with what they see, lead-
ing to workarounds and simplifications that
encourage the development of systems that are
inconsistent with the underlying specifications.
Although there’s been an upsurge in the develop-
ment of specification-friendly “RESTful” systems
(that is, treating HTTP as an interface rather than
just a transport), barriers still exist to taking the
Web further into a generalized Web of data and
developing significantly more useful services.

I suggest that one of the biggest barriers is the
apparent complexity of Semantic Web systems.
Syntax issues are popular talking points, but
instead let’s consider the Web aspect from the bot-
tom up. I theorize that it’s merely the abstractions
we’re using that are too complex. There might be
aspects that we can’t (or shouldn’t) hide, but there’s
nothing to be gained from unnecessarily stretch-
ing human conceptual capabilities. In the next col-
umn I’ll offer a possible solution (agents!).

Those Web Versions Again
In previous columns, I’ve made plenty of reference
to the Web 2.0 label, which brings with it the
implication that there was a Web 1.0 and will be a
Web 3.0 (although arbitrary and potentially mis-
leading, these labels are useful for drawing lines
in the sand).

Web 1.0 was concerned with HTTP and the
HTML format, with distributed documents bound
together through hypertext links. Web 2.0 brought
improved user experience through client-side
scripting and introduced a wider range of content-
delivery formats. Asynchronous calls to the HTTP
server from the browser — Asynchronous
JavaScript and XML (Ajax) — have enabled more

fluid interactions, and machine-readable data has
made browser-based information merging viable,
producing novel combinatorial applications
known as mashups. Web 3.0 has (among other
things) the promise of powerful services and
sophisticated data integration, not least through
Semantic Web technologies, to fully generalize
from a Web of documents to a Web of data.

Clearly, one reason for the Web’s viral success
has been its relative simplicity. Clients (browsers)
and servers are available as low-cost commodity
software, deployable on a wide range of operating
systems. In Web 1.0, the budding site developer
produced material by copying and pasting HTML
code, with most browsers’ View Source capability
offering insight into existing documents. In Web
2.0, the growth of content management systems
(CMSs) has meant that publishing on the Web
requires virtually no technical expertise. Anyone
with basic desktop application skills can produce
quality online publications, and an awful lot of
people are doing just that in the form of blogs. Fig-
ure 1 shows a typical system architecture. If we are
to extend to a Web of data, we need to figure out
how best to go beyond simple data viewers and
look at how systems can integrate and process that
data with minimal human interaction.

Services and Data
Two closely related approaches reduce the human
work necessary to achieve a particular end and
make the Web more capable. The first is to build
machine-oriented services that let computers sort
things out among themselves with less human
intervention. The other approach is to increase the
amount of useful data on the Web. Of course, for
data to be really useful requires some kind of serv-
ices. Conversely, for services to do useful work
they need data on which to operate. Another con-
sideration is that making data useful in the global

Danny Ayers • Talis

environment requires conventions on
how the data is expressed so that dis-
parate, independent systems can all
make sense of it. The Web is built upon
HTTP, which can support services. The
typical interaction of participants is a
simple request–response between
browser and host, but it’s reasonable
to say that every site is already imple-
menting a service by delivering infor-
mation according to HTTP.

In recent years, Semantic Web
technologies have brought Web-
friendly data languages to the table, so
you might imagine that there would be
a clear way to improve the Web
through HTTP and Semantic Web-
based HTTP services.

Simple Is as Simple Does
What makes the Web the Web is its
links: documents contain appropriate-
ly encoded references to other docu-
ments, and Web browsers know how
to interpret these references and let
users navigate the Web hyperspace.
The markup for HTML links is simple,
based around uniform resource identi-
fiers (URIs), and the notion of linkage
is relatively straightforward to other
languages (see “Evolving the Link,”
IEEE Internet Computing, 2007, vol. 11,
no. 3, pp. 96, 94–95).

At the protocol level, things get
rather more complicated with URIs,
identity resources, conceptual entities,
and so on. When clicking on a link,
users want to see in their browsers a
representation of the resource, typical-
ly a HTML document. But a single
resource might have multiple represen-
tations of different media types — text,
HTML, image formats, and so on.
When a URI is dereference in a brows-
er, part of the client-server messaging
is concerned with content negotiation.
The browser informs the Web site host
of the kind of material it would like to
receive, and in return receives the rep-
resentation that the server determines
is the best match. The protocol level’s
complexity is hidden from the brows-

er, largely because the browser has
preferred media types (with HTML at
the top of the list). For the Web pub-
lisher, complexity tends to be hidden
through conventions such as the
“magic” interpretation of particular
media types’ filename extensions (an
example.jpg file, for example, will be
delivered over HTTP with media type
image/jpeg). Sometimes such con-
ventions do offer conceptual simplifi-
cations without distorting the reality
of the protocol. Although there’s no
definitive specification for the com-
monly used term “URL” when used to
describe URIs that might be derefer-
enced over HTTP, there’s no real loss
of fidelity. But in general, the inter-
faces that a large proportion of Web
developers program against seem to
bear only passing resemblance to
what’s actually contained in the rele-
vant specifications — they program
against what their tools offer them.

Using More of the Web?
Programmers (like most humans) com-
monly use abstractions of complex
systems to provide simpler sets of
symbols, letting them deal with phe-
nomena without having to delve into
unnecessary detail. The Web’s core
conceptual model is that of resources
and their representations. This seems
suitably simple and appears to be a
reasonable fit for the typical opera-
tions carried out by HTTP servers,
browsers, and intermediaries such as
caches. However, even without drop-
ping down to the level of messages on
the wire, this model’s simplicity is illu-
sory. Figure 2 shows a resource and its
set of representations of different
media types.
Yet, a resource’s individual represen-
tations aren’t necessarily complete.
There’s no expectation that a photo-
graph of a horse will contain all the
information found in other represen-
tations — the horse’s pedigree, for
example. It’s up to the publisher to
decide whether that is a valid repre-

sentation. What’s more, although we
can consider the association between
a resource and its identifier permanent
— “Cool URIs don’t change,” according
to Tim Berners-Lee (www.w3.org/
Provider/Style/URI) — individual rep-
resentations almost always change
over time. IEEE Internet Computing’s
homepage URI is http://computer.
org/internet (among others), but the
HTML representation’s content varies
from issue to issue.

If we look at how Semantic Web
technologies express data on the Web,
the plot thickens further. As Figure 3
shows, one or more of a resource’s rep-
resentations might describe a Resource
Description Framework (RDF) graph.
The media-type representation space is
relatively well constrained: typically,
documents will be RDF/XML or Turtle
(although a Gleaning Resource Des-
criptions from Dialects of Languages-
aware agent will also deal with
arbitrary XML formats). Within the
graph represented by the document,

SEPTEMBER • OCTOBER 2007 85

A Difficult Abstraction

Figure 1.Typical Web 1.0 content
management system. Content (with its
associated metadata) is available to
processes managed on a server, which
exposes documents to clients.The user
interacts with the system through a
view of those documents, as presented
by a browser.

> go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

file:///Users/dannvavers/Documents/SES

Data
Processes

Server

Processes

View

86 www.computer.org/internet/ IEEE INTERNET COMPUTING

Webscience

arcs have a fairly natural conceptual
correspondence to links in HTML doc-
uments. However, a large proportion of
nodes and arcs will have URIs begin-
ning with “http.” This offers the docu-
ment’s consumer the opportunity to
follow its nose using the HTTP proto-
col and get representations of the iden-

tified resources to increase its knowl-
edge. The resources identified in a doc-
ument might well have their own
graph representations, which inherit all
Web documents’ characteristics,
including not being “complete” repre-
sentations of the resource, varying
over time, and so on.

And the REST...
When talking about this abstraction of
the Web, I’ve really been talking only
in terms of the HTTP GET method, used
by a client to ask a server for a
resource’s representation. Even the
humble browser supports the POST
method, and the HTTP specification
includes other methods that might
modify the identified resource: PUT
and DELETE.

Other ways also exist to abstract
messages and data over the Web. One
example is the Web services frame-
work, which began with SOAP as a
protocol for wrapping data for deliv-
ery over HTTP. The best-known
approach is to encode remote proce-
dure calls. One way we can avoid com-
plexity is to use only a small amount
of the facilities that HTTP has to offer
— typically, the GET and POST methods
— with an additional protocol layer
passing the responsibility for data
description inside the message bodies.

However, if we’re talking about
maximizing interoperability with exist-
ing Web systems and leveraging the
techniques that have scaled to Web
proportions, we should use HTTP as
designed. This involves working direct-
ly with the HTTP interface down at the
transport layer, rather than addressing
system-specific interfaces through
opaque wrappers for method calls or
data tunneled through messages.

Without wishing to disparage WS-
* approaches, it seems self-evident that
a Web developer should look to “raw”
HTTP for communications and play
nicely with the existing Web architec-
ture unless there are very good reasons
not to. The W3C Technical Architec-
ture Group’s publication, “Architecture
of the World Wide Web, Volume 1”
(www.w3.org/TR/webarch), is required
reading for anyone remotely involved
in Web systems.

Although the abstraction provided
by the specifications and experts in the
field might be more consistent than the
abstraction assumed by many PHP

Figure 2. A resource and its representations. The resource is a conceptual entity
(identified by an uniform resource identifier), which is reflected on the computer
by one or more concrete representations, series of bytes associated with media
types which correspond to standard formats.

Representation

Rp

mediaType

mT

Representation

Rp

mediaType

mT

Representation

Rp

mediaType

mT

mT1 = text/html

mT2 = image/jpeg

mT3 = application/rdf+xml

Resource

Figure 3. RDF graphs on the Web. Here, the conceptual resource has a concrete
representation in a standard RDF format (media type). This representation
describes a graph model. The model’s nodes and arcs might, in turn, correspond
to other resources with RDF-interpretable representations.

Representation

Rp
describes

application/rdf+xml

Resource

Representation

Rp
describes

application/rdf+xml

Resource

Representation

Rp
describes

application/rdf+xml

Resource

Representation

Rp
describes

application/rdf+xml

Resource

hackers and the like, it doesn’t exactly
provide an intuitive mental model for
the programmer who’d rather code
than read articles like this.

Mashups
But wait, hasn’t Web 2.0 solved the
problem of service complexity on the
Web with the mashup? Hardly.
Although several useful and impres-
sive mashups exist (see www.program-
mableweb.com), they’re one-off
combinations of their source data (see
Figure 4). That data itself is usually
expressed in domain-specific formats
and translated to a local representation
for display, with little opportunity for
doing anything useful with the inte-
grated data. Systems such as Yahoo
Pipes (http://pipes.yahoo.com) hint at
the potential for interwired services on
the Web, but they’re constrained to
manipulating content and content-ori-
ented metadata (RSS, for example)
rather than having a generic data lan-
guage such as RDF to play with. It’s
certainly impressive to see what peo-
ple have been able to do in the brows-
er, but the underlying flaw common to
most browser-based Web 2.0 systems
is that they take the same abstraction
found server-side and echo it within
the browser level. Server-side mashups
rarely improve on this.

I hope I’ve made a reasonable case
that, beyond the simplest system,

“correct” Web development is difficult,
and have suggested a likely cause is the
level of abstraction with which the
specifications express it. How can we
avoid the burden of these complex
abstractions? There isn’t space here to
go into detail — in my next column, I’ll
fill some of that in — but I believe a
good approach might be to fairly radi-
cally abstract away many of the com-
ponents we’re familiar with, such as the
client and server. Additionally, Seman-
tic Web technologies make it possible
for software systems to communicate

with each other, so that if we can find
abstractions which don’t get in the
way, the end result can be much more
than a simple document view. Where
I’m going with this is all the way back
to the old artificial intelligence notion
of intelligent agents, which has gener-
ally been either forgotten or maltreated
when applied to Web systems. I believe
this is feasible because most of the nec-
essary components are now imple-
mented in a form that treats them as
commodities that can be joined with
near-invisible glue.

Danny Ayers works for Talis as a development

community liaison for their Semantic Web

platform (http://talis.com/platform). His

weblog is at dannyayers.com. Contact him

at danny.ayers.ieee@gmail.com.

SEPTEMBER • OCTOBER 2007 87

A Difficult Abstraction

Figure 4. Mashup architecture —
more of the same.A typical mashup
will take documents from multiple
source servers, each with their own
specialized processes and data
storage, and combine their contained
data locally using purpose-built
processes and data containers.

> go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

file:///Users/dannvavers/Documents/SES

Processes

Server

Client

Server Server

View

Data

DataProcesses

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

