
Websense

From Here to There

All models are wrong. Some are useful.
— George E.P. Box

I n the last Websense column, I described where
I thought the Web will be headed over the next
few years. I speculated that the trend seems to

be toward the Semantic Web, although maybe not
via the shortest path of directly deploying Seman-
tic Web technologies such as RDF and OWL. For
this column, I promised some concrete examples
of technologies that support this prognosis.

One key idea of the Semantic Web is the Web
of data, in which richly interconnected data col-
lections appear alongside (and integrated with) the
current collections of hypertext documents. How-
ever, the Web supports linking, and with the vari-
ous data languages available (often XML based), a
Web of data without Semantic Web technologies
is entirely conceivable. In a sense, we already have
such a thing, although the data are usually bina-
ry files such as images and audio files, which seri-
ously limits linking potential.

Without the ability to join pieces of informa-
tion and work more on the level of knowledge rep-
resentation, this naïve Web of data offers little
promise in itself. There is a possible shift under
way, however, from the current Web as (mostly) a
document repository with generally limited gran-
ularity of addressability, to the Web as a generic,
moderately interlinked data store (which includes
documents as a subset of data types).

What of Services?
Web (2.0) applications are usually considered serv-
ices — they perform various functions on behalf of
end users. Additionally, we have machine–machine
services, such as grid computing systems and those
enabled by the Web services specifications (WS-*).
Much of the current emphasis on the latter sur-
rounds service-oriented architecture (SOA), which

(like Web 2.0) tends to be about reassessing old
ideas under a new jargon umbrella. One core idea
common to these trends is the development of
loosely coupled and interoperable services, which
application developers or users can combine into
more complex systems. Web 2.0 talks of mashups,
WS-* talks of choreography, but the general ideas
are the same — services are encapsulated as com-
ponents, but we can interconnect them through
exposed contracts that abstract internal function-
ality. This is great in principal, and the overall dis-
tributed architecture is in line with the Web’s. But
the devil is in the details.

Some have criticized the WS-* stack because it
fails to exploit Web architecture, using HTTP as
nothing more than a transport. Web systems inter-
face through a handful of simple methods down
alongside the HTTP transport layer. WS-* inter-
faces are contained in the payload messages — in
extreme cases as remote procedure calls (RPCs).
This results in increased complexity, but we can
offset this to some extent by investing in tools.
Web 2.0 systems generally tend to be more faithful
to the Web’s design, which is an example of the
Representation State Transfer (REST) architecture.

However, a fundamental problem — common
to most current system implementations follow-
ing either architectural approach — seriously
undermines services’ potential benefit. Essential-
ly, the communication between systems is gener-
ally based on domain-specific languages. So,
although the SOA movement and comparable
Web 2.0 APIs have made it easier to arbitrarily
wire systems together, once connected, there’s no
guarantee they’ll speak the same language. To use
a programming language analogy, the interfaces
are strongly typed. This isn’t an issue between
applications in the same domain, but in a het-
erogenous environment like the Web, it rules out
the possibility of communication between appli-

JANUARY • FEBRUARY 2007 1089-7801/07/$25.00 © 2007 IEEE Published by the IEEE Computer Society 85

Danny Ayers • Independent Consultant

86 www.computer.org/internet/ IEEE INTERNET COMPUTING

Websense

cations that might have some features
in common.

The only way forward that enables
true loose coupling is to expose the
information in a form that allows par-
tial understanding of messages, so that
when communication is possible, a
potential for crossover across applica-
tions exists. This, of course, is a key
benefit of Semantic Web technologies:
system integration is enabled through
using shared, non-domain-specific
languages (RDF and OWL). However —
and this is important — although the
original publisher might expose data
in a domain-specific language, there’s
nothing to stop another party from
interpreting that information within a
more general-purpose model.

The Transitional Web
The local, immediate lure of machine-

processable data’s utility has prompt-
ed the emergence of technologies that
lie between the Web of documents and
the generalized Web of data. Micro-
formats (http://microformats.org), for
example, allow the publisher to ex-
press first-class data in (X)HTML. This
data tends to be domain-specific: busi-
ness cards (hCard), calendars and
events (hCalendar), and so on. Micro-
formats make no attempt to generate a
general-purpose solution to Web data
outside the conventions of specific
vocabularies; how systems might
interpret individual terms in different
contexts or how those terms relate to
each other is largely undefined (be-
yond HTML’s syntax constraints).

Looking around the Web (2.0)
today, it’s easy to see signs of what

we could call Semantic Web envy. It’s
there in systems touted as Web-
friendly data stores such as Amazon
Simple Storage Service (S3) and
Google Base (www.google.com/base/).
Bookmark-tagging and ranking sites
such as del.icio.us (http://del.icio.us)
and Digg (www.digg.com) get their
value from (human-generated) des-
criptions of Web resources. The
numerous social-networking systems
capture relations between people.
Flickr (http://flickr.com) not only
hosts photographs, but utilizes per-
sonal connections along with tagging.
Different data types are integrated
locally, but they reach out to the rest
of the Web in a very limited fashion,
through HTML pages, feeds, and (usu-
ally) domain-specific APIs.

Although we might view the “inter-
mediacy” of languages like microfor-

mats and Web 2.0 services as a
negative, these systems have a win-
ning card because they’ve actually
been implemented. What’s more, we
can view them as part of the Semantic
Web because we can map virtually
every kind of data, at least partially,
onto the RDF model. Additionally,
many of these systems build on exist-
ing foundations, rather than reinvent-
ing Web infrastructure.

Microformats, for example, add
extra value to current activities around
HTML authoring by relatively trans-
parently including machine-readable
data. From a Semantic Web viewpoint,
if we can look at it as RDF data, then
the particular serialization is irrelevant.
For microformats and many other
XML-based formats, GRDDL (Glean-

ing Resource Descriptions from
Dialects of Languages; www.w3.org/
TR/grddl/) offers a deterministic,
unambiguous mechanism for inter-
preting the material as RDF.

A Web built with explicit data
embedded in documents would be con-
siderably more useful than documents
alone. It could consistently support the
direct manipulation of information as
data, without the limitations of “scrape
and guess” statistical indexing tech-
niques with human-readable text or
purely localized data semantics. In the
new scenario, we can view the docu-
ment in a browser as a user interface to
underlying data, which might be
human-readable.

Managing Content
With the growth in content manage-
ment systems (CMSs), control over
microcontent — subdocument-sized
chunks — has increased. Content syndi-
cation technologies are closely associ-
ated with blogs and other news-like
information sources. Rather than access
to Web pages being relatively passive,
with users initiating every request,
syndication systems deliver material in
a way that emulates the server pushing
it. This approach offers significant ben-
efits for often-updated content, in
which the end user can subscribe to
feeds and receive news updates indefi-
nitely without having to manually nav-
igate to the site in question.

But there’s more to syndication
than the delivery mechanism. The con-
tent being delivered is associated with
descriptive metadata, providing infor-
mation like the an entry’s publish date,
title, and author. Although it’s possible
to do this in HTML (using <meta> tags,
for example), usage varies consider-
ably in “the wild.” With syndication,
reasonably rich and consistent meta-
data is baked into the feed formats.

Syndication:
An Intermediate Technology
One compelling argument for using
RDF is that it lets you say anything

Microformats add extra value to current
activities around HTML authoring by
relatively transparently including
machine-readable data.

about anything in a common lan-
guage. Philosophers and logicians
might dispute this assertion’s accura-
cy, but RDF is clearly general-pur-
pose, whatever its capabilities. From
a content-oriented developer’s per-
spective, however, such generality’s
benefits are overshadowed by the
need for a document-oriented lan-
guage. Where other explicit data is
required, RDF is perceived (often cor-
rectly) as having increased complexi-
ty compared to a domain-specific
format or language. For a typical
publisher’s purposes, it isn’t necessary
to say anything about anything, but
merely to say a few things about a
particular kind of data.

For instance, the RSS syndication
language was originally based on RDF,
but the typical application of syndica-
tion involves reading content through
a different interface (the aggregator or
newsreader). We can fulfill this appli-
cation’s requirements using a simpler
delivery syntax, such as the fork that
led to RSS 2.0. This is currently the
dominant syndication format. Other
factors no doubt contributed to a large
number of Web users adopting RSS,
but a significant one is that it’s the
minimum necessary for getting the job
done. The “job” here is no longer being
part of the Semantic Web, but merely
being compatible with existing (and
anticipated) newsreading tools. As it
happens, due to various failings and
ambiguities in the specification, RSS
2.0 turned out to be a little less than
what was required to get the job done,
but the more recent Atom Syndication
Format provides the necessary bug
fixes without too much overhead
(www.ietf.org/rfc/rfc4287.txt).

Thus, the original RSS was mostly
concerned with (meta) data about a
site, and the “simple” RSS branch
shifted the emphasis to content deliv-
ery. This would suggest, if anything, a
move away from data. However, syn-
dication’s delivery mechanism (polled
HTTP) is independent of what’s being
delivered, and because Atom cleans up

the content description, data has
returned through the back door.
There’s also a shift afoot in Atom’s
other specification, the Atom Publish-
ing Protocol (APP; http://bitworking.
org/projects/atom/). This is essentially
a protocol for passing content from
client to server, typically for authoring
applications such as blogs. APP works
directly over HTTP, with the Atom for-
mat as the primary payload. In addi-
tion to create, update, and delete
facilities for individual resources, it
also includes support for description
and discovery of resource collections,
and description and discovery of serv-
ices for manipulating those collections.
To support all that, an implementation
needs substantial data.

Just through its existence, Atom
implies a certain application architec-
ture. System components have a uni-
form interface based on HTTP; they’re
loosely coupled and communicate via
APP. These components include news-
readers, which follow the protocol by
doing simple HTTP GETs on feed URIs.

A service that fully supports the Atom
protocol will need some kind of
resource persistence with URI-derived
addressability; we can generally des-
cribe this service as an Atom store.
Such a store will have a data model
based on constructs from the Atom
format (feeds, entries, and feed and
entry metadata) and APP (workspaces,
collections, categories, and so on).
Given the protocol endpoints, the
Atom system is also well positioned
for acting as a data aggregation and
processing service. One example is the
Venus application architecture that
Figure 1 illustrates.

Atom might have the backing of
IETF specifications, but a similar serv-
ice setup is evident in many CMSs. An
internal model will have notions of
content items and descriptions of those
items, along with constructs to enable
grouping sets of items. Because a CMS
needs to interface with the Web,
there’s likely to be close correspon-
dence between its internal data identi-
fiers and URIs.

JANUARY • FEBRUARY 2007 87

From Here to There

Figure 1. Venus architecture. The system aggregates and filters feed data from
the Web, storing it as Atom. The stored Atom can then be remixed and
republished in different ways according to templates, such as HTML, feed, and
RDF representations.

Spider

Splice

Filters

Template

Template

Template

HTML

Universal feed parser

BeautifulSoup

Reconstitute

88 www.computer.org/internet/ IEEE INTERNET COMPUTING

Websense

From the content-oriented Web
developer’s viewpoint, this approach is
nothing special — again, it’s just get-
ting the job done. For those who care,
however, using a common model
makes building interoperable services
easier. Similarly, for the data-oriented
Semantic Web developer, at least at
first glance, there isn’t much to get
excited about — this approach deals
with human-readable content in a
non-RDF model with non-RDF syntax-
es. But although these systems might
not use RDF, they’re built squarely
around resource description. The lan-
guage used isn’t generalized to enable
description of anything — just content
and content collections. But within
that context, it’s as general-purpose as
you can get, while still being optimized
for the specific (content) domain. Atom
is a domain-specific XML dialect, but
automated systems can map it to the
RDF world.

A Layer Between
An aspect of many recent content-
oriented technologies is worth partic-
ular attention: for want of a better
name, I’m calling it the content model
layer. The general idea is a data model
oriented toward content. Such a model
is described in the Atom format/proto-
col specification, the Java Content
Repository (http://jcp.org/en/jsr/detail?
id=170), and numerous other systems
on the Web today. The content model

layer treats documents and their asso-
ciated metadata as a unified whole.
Obviously, this isn’t a new idea (given
that the systems I mentioned are
already implemented), but treating this
model as a layer in a stack of data rep-
resentations provides a different per-
spective on the idea’s potential.

Layering is well known as an effec-
tive route to complex system develop-
ment. Each layer is dependent on the
layer below it, but to layers above, it
provides a simplified abstraction of
everything below. Ideally, the abstrac-
tion layers won’t “leak” (reveal what’s
under the hood), and the list-like struc-
ture will provide some separation of
concerns. Content and its metadata on
the Web have various parts; some are
identified with URIs, and some involve
special names such as the content
media type (text/html, image/jpeg, and
so on) and various other HTTP header
fields. The additional metadata is usu-
ally based on a fairly narrow set of
concepts, such as the publication date
and authors.

Again, this isn’t new — people have
been working with documents in this
general fashion for as long as informa-
tion has been recorded. The reason I
think the approach is particularly use-
ful at this point, however, is that we
now have the conceptual (and pro-
gramming) tools for the Semantic Web
— a generic model of information —
and the documents in question are

already on the Web. The real-world
librarian might use a book author’s
name or its Dewey categorization to
determine on which shelf to place it.
But shifting up a layer of abstraction,
how do you usefully shelve documents
in a completely generalized, massive-
scale, interconnected data repository?
We’re no longer looking up from the
document to the document repository,
but from the knowledge representation
model downward. The content model
layer offers a view of the content (and
its metadata) at a level of abstraction
that works from the current document-
based Web’s perspective, from the per-
spective of a naïve Web of data, and
from the perspective of Semantic Web
languages. Figure 2 shows how the
content model layer projects docu-
ments onto a Web of data.

Incidentally, it’s been suggested
that RSS itself could become the lin-
gua franca of Web data. Although
adding RSS’s (comparatively) stan-
dardized metadata to messages of any
kind would allow a degree of unifor-
mity in data handling, taken alone,
this wouldn’t be a great advance on
the naïve Web of data we have now.
Instead, it would be integration at the
lowest common denominator rather
than the highest common factor. But
in a larger context, within a fledgling
Semantic Web, Web applications
could integrate this kind of material
with other data types from other
sources, and the potential benefit
would be amplified by the network
effect across domains.

Data all the Way Down
Even without the Semantic Web as the
specific target, if you extrapolate from
recent developments, some kind of
Web of data seems fairly inevitable.
Different paths are evident: exposing
existing off-Web data, adding explicit
data to content, or treating content as
data. The latter has had little analysis,
but I believe it’s reasonable to consid-
er treating content as data via initia-
tives like Atom as an emergent

Figure 2. From a Web of documents to a Web of data. Historically, the Web has
largely been comprised of human-readable documents, with little explicit data
exposed. A smooth transition to a more general Web of data is possible by
projecting documents (and their metadata) as explicit data through a uniform
data model designed for content.

Content model layer

Data

Web of data

DocumentsWeb of documents

Data

Web of documents

increment between the Web of docu-
ments and a Web of data. Within the
context of content-oriented systems,
integration comparable to the kind
that Semantic Web technologies offer is
possible using a model that’s general-
purpose within that scope.

To the Semantic Web enthusiast,
this might sound painfully suboptimal.
But the fact is that developers care
most about solving local problems in
the easiest possible way with tools
they know. That rarely means looking
to global solutions because they usu-
ally involve extra work. Semantic Web
technologies are still perceived as
being complex, and their biggest ben-
efits accrue from being part of a net-
work including third-party tools that
use those technologies. Perceptions
take time to change, and adoption
doesn’t happen overnight.

D evelopers’ experiences suggest
that the demands of the Semantic

Web vision are generally well-aligned
with Web systems’ practical require-
ments. As mentioned in reference to
SOA and Web 2.0, it’s generally get-
ting easier to implement intercomput-
er connectivity and distributed
computing architectures using the
Web as a platform. Yet the ability to
connect and distribute data is of
limited use without some way to
intelligently integrate that data. For-
tunately, Semantic Web technologies
can increase the potential for data
integration. Maybe future events will
lead to the rapid, viral spread of these
technologies, but that seems unlikely
right now. Immediate benefits come
from leveraging what we already
have, and that means primarily a Web
of documents. Still, it seems likely
that with developers maximizing the
benefits through data-oriented Web
systems, momentum is likely to carry
us to a Semantic Web sooner rather
than later.

Danny Ayers is an independent developer, con-

sultant, and author. His research interests

are primarily around Semantic Web tech-

nologies. Ayers has coauthored 10 books on

programming, generally covering Web-

related topics. He is chair of the Developers

Track for WWW 2007. His Weblog is at http://

dannyayers.com. Contact him at danny.

ayers.ieee@gmail.com.

JANUARY • FEBRUARY 2007 89

From Here to There

IEEE Distributed Systems Online,

http:/ /dsonline.computer.org

Call Articlesfor

D S

O

���������	�
�	������������������������	�

�����������������������������������

�����		�����������		��������������	��

����	�����������	������������������������

����	���������	�	���	�� ����	��������!����

����������������������"���	�	���	��

��������������������������������������

��������������		�������������#���

�����������������	��	�������$%%�	�����

������������%������%����	%�	����%��%

������������

